Lesson 5: Erosion & Weathering Notes

Erosion & Weathering

Definition

- **Erosion**: The process of wearing away and transporting soil, rock, and sediment by wind, water, ice, or gravity.
- Weathering vs. Erosion:
 - Weathering: Breaks down rocks into smaller pieces.
 - Erosion: Moves the broken pieces to a new location.

Types of Erosion

- 1. Water Erosion (Most Powerful)
 - o Cause: Rain, rivers, waves, floods.
 - Example: Grand Canyon was carved by the Colorado River.
- 2. Wind Erosion
 - Cause: Strong winds carry sand and dust.
 - o **Example**: Sahara Desert sand dunes, dust storms in dry areas.
- 3. Glacial Erosion 🔆
 - o **Cause**: Moving glaciers scrape and reshape land.
 - Example: The Great Lakes were carved by glaciers.
- 4. Gravity (Mass Movement)
 - Cause: Rockfalls, landslides, mudslides.
 - o **Example: Steep cliffs collapsing** after heavy rain.

Soil Erosion

- **Definition**: The wearing away of the top layer of soil (topsoil) by water, wind, or human activity.
- Why It Matters:
 - o **Damages farmland** and pollutes water.
 - Causes landslides and loss of fertile soil.
 - Takes hundreds of years to naturally replace lost soil.

Weathering

- **Definition**: The process of breaking down rocks into smaller pieces by natural forces (water, wind, ice, living organisms).
- **Key Idea**: Weathering **does not move** the broken pieces—erosion does!
- Importance:
 - Creates soil needed for plant growth.
 - Shapes landscapes (valleys, caves, cliffs).
 - o Forms unique rock formations (e.g., The Grand Canyon).

Types of Weathering

- Chemical Weathering: Rocks change chemically, forming new substances.
 - o Examples:
 - Rust (Oxidation): Iron in rocks reacts with oxygen & water → reddishbrown rust.
 - Acid Rain: Pollution makes rain acidic → wears away buildings/statues.
 - Cave Formation: Carbonic acid dissolves limestone → creates caves.

Lesson #6: Mountains & Volcanoes

What Are Mountains?

- Large landforms that rise steeply from the surrounding land.
- Formed by tectonic activity when Earth's plates collide or slide past each other.

Types of Mountains

- 1. Fold Mountains
 - Formation: Tectonic plates collide, causing Earth's crust to fold.
 - o Examples: Himalayas, Alps, Appalachians.
- 2. Fault-block Mountains
 - Formation: Large blocks of Earth's crust lift or tilt along faults.
 - Examples: Sierra Nevada, Tetons (Wyoming).
- 3. Dome Mountains

- o Formation: Molten rock pushes Earth's crust upward but does not break.
- Examples: Black Hills (South Dakota), Adirondacks (New York).

4. Residual Mountains

- o Formation: Older mountains that eroded over time, leaving behind remnants.
- Examples: Appalachian Mountains (USA), Urals (Russia).

Volcanic Mountains

- Formed by volcanic activity (layers of lava & ash build up over time).
- Examples: Mount Fuji, Mount St. Helens, Mount Etna.

Types of Volcanoes

- 1. Shield Volcanoes 🛕
 - Formation: Gentle, non-explosive eruptions of runny lava spread out in thin layers.
 - o Examples: Mauna Loa, Kilauea (Hawaii).
- 2. Composite Volcanoes (Stratovolcanoes) 📠
 - Formation: Built by alternating layers of lava and pyroclastic material (explosive eruptions).
 - Examples: Mount St. Helens (USA), Mount Fuji (Japan), Mount Vesuvius (Italy).
- 3. Cinder Cone Volcanoes 👗
 - \circ Formation: Explosive eruptions throw volcanic ash & rocks into the air \rightarrow falls back around vent, forming steep cone-shaped mountains.
 - Examples: Parícutin (Mexico), Sunset Crater (USA).
- 4. Lava Domes (Volcanic Domes) 📠
 - Formation: Slow eruption of thick, viscous lava piles up, creating a steep-sided dome.
 - Examples: Novarupta (Alaska), Mount St. Helens Lava Dome (USA).
- 5. Fissure Volcanoes 🗥
 - Formation: Lava erupts through cracks (fissures) in Earth's crust, forming large lava plains.
 - Examples: Iceland's Laki fissure, East African Rift.

The Ring of Fire 🔵 💧

What is it?

- o A seismically active zone around the Pacific Ocean, known for volcanoes & earthquakes.
- 75% of the world's active volcanoes are in this region!

Where is it?

- \circ Stretches from New Zealand \to Japan \to Alaska \to North & South America.
- o Key countries: Japan, Indonesia, Chile, Alaska, Philippines, New Zealand, California.

Why is it important?

- Most earthquake-prone zone on Earth.
- o Valuable for studying tectonic plate movement & volcanic activity.

• Tectonic Plate Boundaries

 \circ Located along **subduction zones** where plates collide \rightarrow causes **earthquakes &** volcanic eruptions.